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SUMMARY 

- 
The lowest axisymmetric body modes of vibrations of the ring stiffened Apollo type 
vehicle are studied by means of a Rayleigh-Ritz procedure. A method i s  developed for 
converting the ring stiffened structure into an equivalent orthotropic, truncated, conical 
shell. 

A simplified theory in  the manner of Love's f i rs t  approximation in  the classical thin shell 
theory i s  used. Results are given i n  the form of dimensionless frequency parameters for 

elastic constants of the equivalent orthotropic shell. It i s  found that stiffening the 
circumferential rings has the same effect on the natural frequency of vibration of the 
conical shell structure as that of increasing i t s  thickness whereas increasing the cross 
stiffness has very l i t t le effect on the natural frequency. Results for the equivalent 
isotropic shell are determined as a special case of the equivalent orthotropic shell and 
are found to be in  good agreement with those predicted by Love. 

..-*I .". :ws vc!ues ef !engh tu % e m  radius ratio, thickness to mean ratio, and the ratios of 9 

In an appendix, a method i s  developed to estimate the vibration frequencies of the 
panels between shell stiffeners by asarming them to be equivalent to simply supported 
orthotropic rectangular plates with no curvature. 

The results of these analyses provide a basic working tool for investigations of coupled 
vibration modes of the Apollo structure i n  the intermediate and critical frequency 
range between low frequency launch vehicle modes and high frequency, high-density 
modes of the primary and secondary structure. 
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1.0 INTRODUCTION 

The analysis of environmental vibration of a complex space vehicle such as the Apollo 
wil  I involve consideration of three broad frequency regions: 

a) Low frequencies involving bending and longitudinal modes of the entire 
launch vehicle where individual sections, such as the payload, tend to 
vibrate very nearly as rigid bodies. 

Intermediate frequencies involving low order coupled modes of the local 
basic airframe. 

High frequencies involving high order modes of the airframe and secondary 
structure which are grouped 50 closely that statistical analysis i s  generally 
required for analysis of vibration levels. 

b) 

c) 

I t  i s  the intermediate frequency range which presents one of the more c'iSficult problems 
in  defining vibration environments and i t  i s  to this frequency range thct this report i s  
directed. 

A method i s  developed for general application to the Apollo to define the lowest 
axisymmetric modes of the basic airframe.These modes constitute the lower ' . Ind 
for this intermediate range of coupled modes and are generally responsible for maior 
dynamic loads on secondary structure and maior equipment packages. This report 
represents a significant step forward in dynamic analysis of the vibration character- 
istics of a complex vehicle such as the Apollo. Although the analysis i s  based on 
vibration of the basic airframe, without loading by equipment, i t  i s  considered a 
necessary preliminary step for developing a fu l l  understanding of the vibration loads 
developed in the flight system. 

The structural frame work of the A w l ' s  stwce vehicle consists essentially of a truncated 
cone-shaped surface built up of pcr,els reinforced with rigid stiffness in  the longitudinal 
and circumferential directions. A detailed analysis of the vibration characteristics of 
the vehicle should take into consideration the exact location and spacing of the stiffeners 
and the mass distribution of the entire structure and i t s  pay load. However, to estimate 
the fundamental frequencies of the body modes of vibration of the structure, i t  should be 
sufficient to assume i t  to be equivalent to an orthotropic truncated conical shell with 
diff icult elastic properties i n  the meridianal and tangential directions. The thickness-to- 
radius ratio i s  assumed to be small so that the elastic properties i n  the radial direction do 
not enter into the study. 

Vibration haracteristics of isotrgpic conical shells have bee 8 studied by Federhofer 
Goldberg , Herman and Mirsky , and Garnet and Kempner . In this report the lowest 
frequency of axisymmetric free vibrations of a simply supported truncated orthotropic sl-ell 
i s  studied by means of a Rayliegh-Ritz procedure. 

1 *  , f 

Superscripts indicate references at the end of this report. 
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A method i s  also developed i n  Appendix A for estimating the lowest modes of the individual 
pme!s between stiffeners which make up the conical shell = 

The results of these analyses are given in the form of non-dimensional frequency para- 
meters which depend on material properties and structural geometry. Specific resonant 
frequencies can then be determined for a wide range of structural materials and structural 
designs which include the +oI lo contiguration . 
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2 .o T H E O R Y  

c:-..-- l y u l G  1 shixvs c: ccnica! she!! cnd the ccmdlnate system med, As shown; a i s  the 

the mean radius of the cone, L 1 i s  the 21 ength measured along the longitudinal axis, 
projected semi-cone angle, x and x define the edges of the truncated cone, R i s  

and r and r 1 
are the radii of the end surfaces of the cor+. it can be shown that 

- -  L -  2 (+- 1 ) cot a 
x2 R 

1 + -  

and 

( 1 +XI )  s i n  a 
h -  h 
- - 2 R  x1 

It i s  assumed that the cone i s  simply supported at  the edges x = xl, x = x 2 .  
deflections, Hooke's law for an orthotropic elastic body gives 

For small 

0 = E' c + E" e e  

oe = E; + E" ex  

X x x  

The median fiber strains are given by 

a u  
X a x  e = -  

where the radius of curvature R i s  related to x by 2 

R2 = x tan a 

so that 

U W e = - +  e X x tan a 

3 

(3) 

(4) 



The displacements U and W i n  the meridional and norma l  directions are 

a w  u =  u - z -  a x  

w =  w 

when u = u (x,t) and 

Following Herrman and Mirsky , the strains corresponding to these displacements are 

w = w (x,t) are the displacements of the median surface 

3 

2 

2 
a w  

a x  
r - z  - E =  

X 1 

i n  the meridianal direction and 

in  the tangential direction I) 

Shear effects are not taken into consideration i n  this analysis. 

The stress resultant in  the x direction i s  

- h/2 

and that in  the tangential direction i s  

- h/2 

The moment resultant i n  the x-direction i s  

4 



I 

- h/2 

and that in the tangential direction is 

Me = ih'2 ae z d z  

- h/2 

Substituting from (3) to (9) the stress and moment resultants (10) to  (13) become 

a u  
Ne X x tan a a x  = E ' h  ( .  + ) + E " h  - 

h3 a 2 \ w  E l l  - h3 - I - a w  = -E:T-- 2 12 a x  a x  X 

The strain energy in the conical shell is given by 

2 
a w  ) -  Mx - 2 - 

a x  a x  
(1 8)  0 x1 

1 
- Me - k ) x  a x  s i n a  d 6 d x  

and the kinetic energy i s  

m x2 
T =  "// 9 [%' + d ] x s i n a  2 d 6 d x  

0 x 1  

where p h/g is the mass per unit a rea  of the shell .  
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Following Shulman, a change of coordinates 

x -  - e Y (20) 

is used to reduce computational work. To use the Rayleigh-Ritz method the displacements 
are assumed to be of the form 

T Y  u = A cos - COS p t 
y2 

1 

T Y  
w = C1 sin A cos p t  

y2 

x2 

e x1 
= I n  - u  

y2 
where 

Then displacements satisfy the boundary conditions 

w = O  at x = x , ,  x2 

Substituting (21) into (19) the kinetic energy becomes 
x, 21T 

I t s  maximum occurs when the shell i s  i n  i t s  middle position, i .e., when sin p t  - 1 

Tt:e potential energy attains i t s  maximum when the shell i s  i n  its extreme position, i .e., 
when cos p t  = 1 . Since i t  i s  a conservative system, the maximum potential energy i s  
equal to the maximum kinetic energy. From (24) and (18) using (21) with cos p t  = 1, 

2 -  2 9  v L u t = l  

-7 
2 2  ( u  + w  ) x s ina de d x  i’ 0 

x1 

6 



This expression for 
which gives the fo 

the frequency i s  minimized with respect to the constants A 
lowing two equations for the determination of the frequencies 

and C1 1 

1 
x2 211 -&{j (u2+w 2 ) x s i n a  d9dx = 0 

2 9  
x1 

After substitution and considerable simplification, equation (26) gives 

+ c,  [-E(+-) tan a I " . ' ] =  0 

where 

211 
< = -  

y 2  

- -- - x' 
x2  

x1 

and 

x 
2 2  
P P X 1  

9 E; 

i s  the frequency parameter. Similarly, equation (27) gives 
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E " 
1 E' tan a 

-A 
X 

X 
24 E '  

For a nontrivial solution, the determinant of the coefficientsof .A i n  equations 
of the 

frequencies p. This quadratic has been solved with the W y l e  CDC 320.3 computer for 
various values of the ratios 

and C 
(28) and (29) should be zero. This gives a quadratic i n  h for the 1 determination 1 

E "  - -  L "e x2 

x 1  X X 

I R I E l  I E t  I and a ,  

and the results are tabulated in  Tables 1 - 4. 

3.0 RESULTS 

It i s  seen that the effect on frequency of increasing the stiffness of the circumferential 
rings i s  the same as that of increasing the thickness of the shell 
elastic properties remaining the =me. Thus, the frequency parameter X i s  approximately 
95 percent higher at E'$E' 

a l l  other dimensions and 

= 5 than that at E'$E' = 0-2. 
X X 

Variations i n  the cross stiffn,ess parameter E"/Etxhave very l i t t le effect on the vibration 
frequency. 

As shown in Table 4 by the special case of an isotropic truncated conical shell, the results 
obtained by the one term approximation of the present theory are within 1 percent of those 
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4 predicted by Love' and are within 3 percent of those predicted by Garnet and Kempner . 
For engineering applications, therefore, the results of this report are accurate enough to 
be incorpmted inte any test or desigr! spcificatlons. 

To apply the results obtained i n  this report to a ring stiffened shell vehicle such as the 
Apollo i t  i s  necessary to devise a method of converting a ring stiffe ed s h e l l  to an equiv- 
alent orthotropic she!!. Such methods have been used by Bodner for stability problems 

the m I n  assumptions that the ring stiffness has very l i t t le  effect on the axial extensional, 
bending rigidity, and shear rigidity of the isotropic shell. 

6 
and by Hoppmonn 7 for vibration problems. Bodner's method i s  the simpler one and involves 

According to this theory, the ratios of the elastic constants E'$E' and E"/E' of an 

equivalent orthotropic shell i n  terms of the various dimensions of a reinforced shell are 
given by, (see Figure 2), 

X X 

E "  2 1 2 ( 1 -  v ) l *  
.I and - = - V E' 

E'6 - 
E '  

- -  

X a h3 X 
S 

where v = Poisson's ratio of the material of the longitudinal stiffener. 

k? Spacing between longitudinal stiffeners. 

h = Thickness of the shell between the stiffeners. 

5 

lo =Stiffener moment of inertia about i t s  own centroid. 

A = Area of cross section of the stiffener. 

z 

z 

S 

= Distance of the centroid of thestiffenerfromthemiddle surface of the shell. 

= Distance of the overall centroid of the ring shell combination from the middle 

5 

C 
surface. 

6 
For details of Bodner's method, the reader i s  referred to the cited references. 
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Figure 1 . Coordinate System and Parameters of a Conical Shell 
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Figure 2. Geometry of a Reinforced Shell Element Between Stiffener 
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TABLE 7 

Values of the Frequency Parameter A for Fundamental Axisymmetric 
Mode of Orthotropic, Truncated, Conical Shells 

1 

E"/E = -0.2 
X 

a 

5 O  

5O 

5O 

1 oo 
1 oo 
1 oo 
1 5O 

i5O 

20° 

20° 

h 
R 
- 

0.05 

0.05 

0.05 

0.15 

0.15 

0.15 

0.20 

0.20 

0.10 

0.10 
II_-- 

L 
R 
- 

0.25 

0.375 

0.50 

0.30 

0 S O  

1 .o 

0.375 

1.0 

0.375 

0.50 

.. 

0.2 0.6 1 .o 1.5 2 4 5 

679.33 

148.92 

60.25 

672.10 

88.21 

9.05 

195.26 

4.93 

24.99 

8.26 

730.46 

199.46 

110.21 

584.36 

99.99 

19.74 

200.36 

9.13 

27 -64 

10.76 

781.58 

250 .OO 

160.16 

696.63 

111.76 

30.42 

205.46 

13.32 

30.28 

13.28 

A 

845.49 

313.17 

222.60 

71 1.96 

126.48 

43.76 

21 1.84 

18.56 

33.58 

16.41 

909.39 

376.34 

285.05 

727.29 

141.20 

57.09 

21 8 -22 

23.79 

36.88 

19.55 

1165 

629 .O 

,534.79 

788.62 

200.07 

110.20 

243.74 

44.69 

50.09 

32.09 

I292 

755 

659.65 

319.28 

229.50 

136.78 

256.5 

55 -09 

56.70 

38.36 
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a 

0.2 0.6 1 .o 1.5 2 4 

5O 

5 O  

5O 

1 oo 

1 oo 

1 oo 

15' 

1 5' 

20° 

20° 

5 

TABLE 2 

Values of the Frequency Parameter X for Fundamental Axisymrnetric 
Mode of Orthotropic, Truncated, Conical Shells 

h 
R 
- 

0.05 

0.05 

0.05 

0.15 

0.15 

0.15 

0.20 

0.20 

0.10 

0.10 

L 
R 
- 

0.25 

0.375 

0.50 

0.30 

0.50 

1 .o 

0.375 

1 .o 

0.375 

j 0.50 

I 

E"/ E = -0.3 
X 

672.74 

142.5 

53.94 

670.27 

86.65 

7.69 

194.5 

4 -39 

24.67 

7.94 

723.85 

193 .O 

103.83 

682.53 

98.41 

18.21 

199.60 

3.57 

27.31 

10.45 

14 

774.95 

243.51 

153.7 

694.78 

110.17 

28.93 

204.72 

12 -74 

39.95 

12.96 

x 

838.83 

306.63 

216.08 

710.10 

124.86 

42.19 

211 - 1  

17.94 

33.25 

16.10 

902.71 

369.76 

278.44 

725.42 

139.56 

55.43 

217.47 

23.14 

36.55 

19.22 

I158 

622.24 

527.81 

786.70 

198.33 

108.1 

242.9 

43.84 

49.75 

31.75 

285 

748.47 

652.47 

817.34 

227.71 

134.17 

255.7 

54.09 

56.35 

38.01 



TABLE 3 

0.2 I 0.6 I 1.0 

a 

1.5 2 4 5 

5O 

5O 

5O 

1 oo 
1 oo 
1 oo 
15O 

15O 

20° 

20° 

Values of the Frequency Parameter h for Fundamental Axisymmetric 
Mode of Orthotropic, Truncated, Conical Shells 

I 

E " /  E = -0.4 
X 

h 
R 
- 

0.05 

0.05 

0.05 

0.15 

0.15 

0.15 

0.20 

0.20 

0.10 

0.10 

L 
R 
- 

0.25 

0.375 

0.50 

0.30 

0.50 

1 .o 

0.375 

1 .o 

0.375 

0.50 

~~ 

663.51 

133.54 

45.14 

667.68 

844.62 

5.79 

193.48 

3.65 

24.20 

7.50 

183.99 

94.94 

679.92 

961.98 

16.35 

198.57 

7.79 

26.84 

10.06 

765.67 

234.44 

144.74 

692.17 

107.93 

26.88 

203.66 

11.93 

29.48 

12.51 

h 

829.52 

297.50 

206.98 

707.48 

122.59 

40.02 

210.03 

17.09 

32.78 

15.63 

893.37 

360.55 

269.21 

722.78 

137.26 

53.14 

216.39 

22.24 

36.07 

18.76 

148 

61 2.76 

518.07 

784.00 

195.90 

105.13 

241.83 

42.68 

49.26 

31.27 

276 

738.84 

642.45 

814.61 

225.21 

130.69 

254.56 

52.73 

55.85 

37.52 

15 
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TABLE 4 

L 1 
R 

0.25 

0.375 

0 .!% 

0.30 

0.50 

1 .oo 
0.375 

1 .oo 
0.375 

0.50 

- 

k 

Comparison of Fundamental Frequency Parameter h Predicted for 
isotropic Conical Shell by Present Theory and by Classical Theory 

Present 
Theory 

774.95 

243.51 

153.7 

694.78 

110.17 

28.93 

204.72 

12.74 

29.95 

12.96 

(Love Formulati on) 

I I 

E" / E = -0.3 h 
X 

a 

5O 

5O 

so 

1 oo 
1 oo 
1 oo 
15' 

15' 

20° 

20° 

h 
R 

0.05 

0.05 

0.05 

0.15 

0.15 

0.15 

0.20 

0.20 

0.10 

0.10 

- C I assi c a I 
Theory 

770 -63 

242.73 

153.51 

693.8 

110.02 

28.73 

203.63 

11.53 

29.70 

12 -82 
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APPENDIX A 

A METHOD FOR ESTIMATING THE FREQUENCIES AND MODE SHAPES 

OF SIMPLY SUPPORTED ORTHOTROPIC PLATES 

The vibration characteristics of the individual panel sections which form the shell of 
the Apollo vehicle may be estimated, for a first approximation, by accounting for 
non-uniform bending stiffness in the f i e  dfiections on the ;?=ne! but neglecting the 
curvature of the panel. This method also neglects any coupling between panels in- 
duced by torsional motion of the stiffeners. The latter effe t has been shown by Lin 
to cause coupled panel modes to group in frequency bands. However, the lower 
frequency of the n band, for pinned supports, coincides with the ntkresonant mode 
for a single span. tthus, analysis of a single panel provides a reasona le estimate 
of the lower bound for individual panel modes. The major reason for presenting this 
analysis, however, i s  to focus attention on an analysis method suitable for orthotropic 
pletes representative of Apol lo skin structure. 

6 
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NOME NCLAT URE 

a, b sides of the rectangular plate 

h plate thickness 

E ' ,  E' , E", G elastic constants of the orthotropic material 
X Y  

D =  
E '  h3 

12 
X 

bending stiffness i n  the x-direction 
X 

E' h3 
D =  e bending stiffness in  the y-direction 
Y 

rigidity in torsion of the orthotropic plate 
E"  h3 G h3 

12 6 
+ H =  

P 

V Poisson's ratio 

weight density of the plate 

W deflection of plate 

P frequency of vibration 

characteristic functions of the vibrating beam problem 
rn' Yn 

X 

t r  t tensile strain i n  x and y direction 
X Y  

shear strain 

tensile stress i n  x and y direction 

XY 
Y 

U 
"XI y 

T 
XY shear stress 

The stressdisplacement relationships for an orthotropic plate are 

- z  (E'  a 2 + E ' '  
- 

Y a Y  2 a x  2 u -  

2 
a w  

f = - 2 G z  
X Y  a x a y  

18 



The stress-stroin relationships are 

p = E '  E + E" E 
x x  Y X 

c = E '  E + E" E 
Y Y Y  X 

-  he strain energy i n  the piate i s  

T x y )  d x  d y  d z  (3 1 
Tx y 

E a  E ( r  

+ y y  + x x  .=Jib( 0 0  2 2 2 

For simply supported orthotropic plates the deflection defined by 

satisfies the boundary conditions at both edges. 

Substituting (4) into (3) and making use of (1) and (2) the strain energy i n  the plate 
can be written as 

X m=l n=l 

2 2 2 2 

E + 23:) (f) + 4 9 3  (t) } 
X X 

Choosing q 
written as 

as the generalized coordinates, the kinetic energy i n  the plate can be 
mn 
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Using Lagrange's equations 

are found to satisfy the equation qrn n 

a solution of which i s  

= c1 cosp t  + C2 s i n  p t qm n 

where 

2 2 2 2 1/2 G 
E 

E" 
E + 2 7 ( J  (C) + 4 4  (J 1 

X X 

From (4) and (10) a l l  the frequencies and modes of vibrations of a simply supported 
orthotropic plate can be determined. 

E" G - 1-V r E 
2 For an isotropic (or uniform).plate, E' = v  ,+r - 

X X 

= D and equation (10) reduces to the usual expression for modes 
E h3 

2 and D = 
12(1-v ) X 

of a simply supported plate. I 

20 
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